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Complex Variables: 
 
Some general relations: 
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Continuity: 
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Cauchy-Riemann equations: 
 

( )zf  regular if and only if 
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( ) ( )yxvyxu ,&, are conjugate functions. 

Both satisfy Laplace’s equation: 
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Integration by Parameterisation: 
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Defining a parameter t on z. 
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Cauchy’s Theorem: 
 
 If ( )zf is regular inside a closed contourγ , then: 
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Cauchy’s Integral Formula: 
 

If ( )zf is regular in some domain D, andγ some closed Jordan contour in D, 
and 0z insideγ , then: 
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Laurent series. 
 
Need to know the following “common expansions”: 
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Generally: 
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If, in Laurent expansion: 

All  0=nb   0zz =  removable singularity 
 For kn >  0=nb   pole of order k at 0zz =  
 If infinite number of sbn '  0zz =  an essential singularity 
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( )zg has a simple pole at 0zz = if: 
 
 ( ) 00 =zg  ( ) 00 ≠′ zg  
  

( )zg has a double pole at 0zz = is: 
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( )zg has a pole order k at 0zz = if: 
 

 ( ) ( )zg
zf

1
=  has a zero of order k at 0zz =  

 
Cauchy’s Residue Theorem: 
 

( )zf regular inside a closed contourγ , except at a finite number of isolated 
singularities. Then: 
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Finding Residues: 
 
Can also find residues by: 
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Where ( )zf has a pole order m at 0zz = …  ( ) 00 ≠zφ … ( )0zφ regular 
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another method: 
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zf =  both ( ) ( )zqzp & regular at 0zz =  

    ( )0zq is a zero of order m… ( ) 00 ≠zp  
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Evaluation of real integral: 
 
… use to solve integrals of the form: 
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Thus, the real integral can be changed to a complex integral about the unit circle: 
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dzzG   which can then be solved 

 
Jordan’s Lemma: 
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let Rγ be the semi-circular contour, extending from +R to –R, and 1γ the portion of the 
real line joining these two points. 
Now, let the closed contour be: 
 
 Rγγγ += 1  
 
Then, IF the following conditions hold for the integral: 
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 ( )zf only has simple poles in the finite half of the upper-half-plane 
 ( ) 0→zf as ∞→z  
 m > 0 
 
Then, the integral becomes: 
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Jordan’s Lemma says, that the contribution from 0→Rγ as ∞→R . Thus, the integral 
becomes just an integral along the real line: 
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Use for integrals of the form ( )∫
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