Complex Variables:

Some general relations:

$$z = z\overline{z} \qquad z^n = (re^{iq})^n = r^n(\cos n\mathbf{q} + i\sin n\mathbf{q})$$
$$e^{i\mathbf{p}} + 1 = 0$$

$$\cosh z = \frac{e^z + e^{-z}}{2} \qquad \cosh iz = \cos z$$

$$\sinh z = \frac{e^z - e^{-z}}{2} \qquad \sinh iz = i \sin z$$

$$\ln z = \ln \left(r e^{iq} \right) = \ln r + iq$$

... define Principle Value range to make this single valued

$$f(z) = u(x, y) + iv(x, y)$$

$$\operatorname{Re}\{f(z)\} = u(x, y)$$

$$\operatorname{Im}\{f(z)\} = v(x, y)$$

Continuity:

$$|f(z)-f(z_0)| \to 0$$
 as $z \to z_0$ in any manner

Differentiability:

$$\lim_{z \to z_0} \left(\frac{f(z) - f(z_0)}{z - z_0} \right) = \frac{df}{dz} \Big|_{z = z_0} \quad \text{as } |z - z_0| \to 0 \text{ in any manner}$$

Cauchy-Riemann equations:

f(z) regular if and only if

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ hold

u(x, y) & v(x, y) are conjugate functions. Both satisfy Laplace's equation:

$$\nabla^2 u = \nabla^2 v = 0$$

Integration by Parameterisation:

$$\int_{g} f(z)dz = \int_{t=a}^{t=b} f\{z(t)\}\frac{dz}{dt}dt$$

Defining a parameter *t* on *z*.

Cauchy's Theorem:

If f(z) is regular inside a closed contour g, then:

$$\oint_{\mathcal{B}} f(z)dz = 0$$

Cauchy's Integral Formula:

If f(z) is regular in some domain D, and g some closed Jordan contour in D, and z_0 inside g, then:

$$f(z_0) = \frac{1}{2\mathbf{p}i} \oint_{\mathbf{g}} \frac{f(z)}{z - z_0} dz$$

Laurent series.

Need to know the following "common expansions":

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots$$

$$\frac{1}{1-\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots$$
convergent on $|z| < 1$

$$convergent on $|z| > 1$$$

Now,

$$\sum_{n} a_{n} z^{n}$$
 converges on some $|z| < R_{2}$

$$\sum_{n} \frac{b_{n}}{z^{n}}$$
 converges on some $|z| > R_{1}$

Thus,

$$\sum_{n} a_n z^n + \sum_{n} b_n z^{-n} \quad \text{converges on some } R_1 < |z| < R_2$$

Generally:

$$f(z) = \sum_{n=0}^{+\infty} A_n(z - z_0)$$
 for a Laurent expansion about $z = z_0$

If, in Laurent expansion:

All
$$b_n = 0$$
 $z = z_0$ removable singularity
For $n > k$ $b_n = 0$ pole of order k at $z = z_0$
If infinite number of b_n 's $z = z_0$ an essential singularity

g(z) has a simple pole at $z = z_0$ if:

$$g(z_0) = 0 \qquad g'(z_0) \neq 0$$

g(z) has a double pole at $z = z_0$ is:

$$g(z_0) = 0$$
 $g'(z_0) = 0$ $g''(z_0) \neq 0$

g(z)has a pole order k at $z = z_0$ if:

$$f(z) = \frac{1}{g(z)}$$
 has a zero of order k at $z = z_0$

Cauchy's Residue Theorem:

f(z) regular inside a closed contour ${\bf g}$, except at a finite number of isolated singularities. Then:

$$\oint_{g} f(z)dz = 2\mathbf{p}i \sum_{z_{k} \text{ inside } g} \operatorname{Res}\{f(z); z = z_{k}\}$$

Where:

$$Res\{f(z); z = z_0\} \equiv b_1$$

Which is the coefficient of the $\frac{1}{z-z_0}$ term in Laurent expansion.

Finding Residues:

Can also find residues by:

Let
$$f(z) = \frac{\mathbf{f}(z)}{(z - z_0)^m}$$

Where f(z) has a pole order m at $z = z_0 \dots f(z_0) \neq 0 \dots f(z_0)$ regular For

$$m = 1...$$
 simple pole: Res $\{f(z); z = z_0\} = \mathbf{f}(z_0)$

$$m = 2...$$
 double pole: $\operatorname{Res}\{f(z); z = z_0\} = \frac{\partial \mathbf{f}}{\partial z}\Big|_{z=z_0}$

$$m = m...$$
 pole order m : Res $\{f(z); z = z_0\} = \frac{1}{(m-1)!} \frac{\partial^{m-1} \mathbf{f}}{\partial z^{m-1}}\Big|_{z=z_0}$

another method:

Complex Summary

$$f(z) = \frac{p(z)}{q(z)}$$
 both $p(z) \& q(z)$ regular at $z = z_0$
 $q(z_0)$ is a zero of order $m...$ $p(z_0) \neq 0$

For simple poles:

Res
$$\{f(z); z = z_0\} = \frac{p(z_0)}{q'(z_0)}$$

And, if $p(z_0) = 0$:

$$\operatorname{Res}\{f(z); z = z_0\} = 2 \frac{p'(z_0)}{q''(z_0)}$$
Provided
$$p'(z_0) \neq 0$$

$$q''(z_0) \neq 0$$

Evaluation of real integral:

... use to solve integrals of the form:

$$\int_{0}^{2\mathbf{p}} F(\cos\mathbf{q}, \sin\mathbf{q}) d\mathbf{q}$$

Now,
$$z = re^{iq} = \cos q + i \sin q$$
, thus:

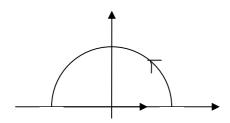
$$\cos q = \frac{1}{2} \left(z + \frac{1}{z} \right) \qquad dq = \frac{dz}{iz}$$

$$\sin q = \frac{1}{2i} \left(z - \frac{1}{z} \right)$$

Thus, the real integral can be changed to a complex integral about the unit circle:

$$\oint_C G(z)dz$$
 which can then be solved

Jordan's Lemma:



let \mathbf{g}_R be the semi-circular contour, extending from +R to -R, and \mathbf{g}_1 the portion of the real line joining these two points.

Now, let the closed contour be:

$$\mathbf{g} = \mathbf{g}_1 + \mathbf{g}_R$$

Then, IF the following conditions hold for the integral:

$$\oint_{\mathbf{g}} f(z)e^{imz}dz$$

f(z) only has simple poles in the finite half of the upper-half-plane $f(z) \rightarrow 0 \text{ as } |z| \rightarrow \infty$

Then, the integral becomes:

$$\oint_{g} f(z)e^{imz}dz = \int_{g_{R}} f(z)e^{imz}dz + \int_{g_{1}} f(z)e^{imz}dz$$

Jordan's Lemma says, that the contribution from $\mathbf{g}_R \to 0$ as $R \to \infty$. Thus, the integral becomes just an integral along the real line:

$$\int_{-\infty}^{\infty} f(z)e^{imz}dz$$

Use for integrals of the form $\int_{-\infty}^{\infty} f(x)dx$